A formal proof of the four color theorem
نویسنده
چکیده
A formal proof has not been found for the four color theorem since 1852 when Francis Guthrie first conjectured the four color theorem. Why? A bad idea, we think, directed people to a rough road. Using a similar method to that for the formal proof of the five color theorem, a formal proof is proposed in this paper of the four color theorem, namely, every planar graph is four-colorable. The formal proof proposed can also be regarded as an algorithm to color a planar graph using four colors so that no two adjacent vertices receive the same color.
منابع مشابه
Short Introduction by Example to Coq and Formalising ZF ⊆ ZFε in Coq
Proof assistants are computer programs that help mathematicians to prove theorems and to formally verify the correctness of proofs. Proof assistants are nowadays one of the more exciting areas in the intersection of mathematical logic and computer science. For example, one particularly exciting achievement is the formal verification of the proof of the four colour theorem using the proof assist...
متن کاملFormalizing Size-Optimal Sorting Networks: Extracting a Certified Proof Checker
Since the proof of the four color theorem in 1976, computergenerated proofs have become a reality in mathematics and computer science. During the last decade, we have seen formal proofs using verified proof assistants being used to verify the validity of such proofs. In this paper, we describe a formalized theory of size-optimal sorting networks. From this formalization we extract a certified c...
متن کاملHomotopy type theory and the formalization of mathematics
er game, for mathematicians with an appreciation of detail. Finally, it gives peace of mind when ones arguments have been checked very carefully with the aid of a computer. Great formalization feats include: a formal proof of the Kepler conjecture [10], the four color theorem [8] and the Feit–Thompson theorem [9] (the beginning of the classification of finite simple groups). Notably, the former...
متن کاملA new proof for the Banach-Zarecki theorem: A light on integrability and continuity
To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0905.3713 شماره
صفحات -
تاریخ انتشار 2009